توضیحات
خلاصه یادگیری ماشین میشل
هدف از این درس ارائه یک دید کلی نسبت به یادگیر ماشین است که مباحث زیر را در بر میگیرد:
جنبه های عملی شامل: الگوریتم های یادگیری مختلف نظیر درخت های تصمیم گیری، شبکه های عصبی و شبکه های باور بیزی،
مدلهای عمومی شامل: الگوریتم ژنتیک و یادگیری تقویتی
مفاهیم تئوریک شامل: زمینه های مرتبط درعلم آمار، یادگیری بیزین و ساختاریادگیریPAC . در این مباحث ارتباط تعداد مثالها با کارائی یادگیری بررسی میشوند، میزان خطای قابل انتظار محاسبه میشود، و بررسی میشود که کدام الگوریتم یادگیری برای چه مسائلی کارائی بیشتری دارد.